ON CHARACTERIZATIONS OF LINEAR GROUPS, II(1)

ву MICHIO SUZUKI

The main object of this paper is to characterize the linear fractional group G_0 in 2 variables over a finite field F of characteristic 2 by the properties of involutions in it. Here by an involution we shall mean an element of order 2. G_0 is isomorphic with the factor group of Γ , the totality of 3×3 nonsingular matrices over F, modulo its center Δ . It is easily seen that any involution of Γ is conjugate to the involution I:

$$I = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{array}
ight).$$

Let Ω be the totality of 3×3 nonsingular matrices commuting with I. Then Ω is a group of order $q^3(q-1)^2$ consisting of triangular matrices with the bottom main diagonal element equal to the top one. Hence in G_0 the centralizer N_0 of an involution has order $q^3(q-1)$ and is isomorphic with the factor group Ω/Δ of Ω modulo the center of Γ . Our main theorem is the converse to this statement.

THEOREM. Let G be a finite group of even order and τ be an involution of G. If the centralizer of τ is isomorphic with Ω/Δ and if every involution of G is conjugate to τ , then G is isomorphic with G_0 , the linear fractional group of 2 variables, with one exception. The exceptional case occurs when F has only two elements and in this case we have $G\cong LF(3, 2)$ or $G\cong A_6$.

A similar characterization of the linear fractional group in 2 variables over a field of odd characteristic has been obtained by R. Brauer in the case that the ground field has q elements with $q \equiv -1 \pmod{4}$ (cf. [2; 2*]).

1. In this section we shall consider the group Ω/Δ and derive several properties of this group which will be used in the subsequent argument.

Throughout this section N_0 stands for the group Ω/Δ . It is clear that N_0 is isomorphic with the totality of 3×3 matrices of the form

$$M(\alpha, \beta, \gamma; \delta) = egin{pmatrix} 1 & 0 & 0 \\ \alpha & \delta & 0 \\ \beta & \gamma & 1 \end{pmatrix}$$

Received by the editors February 10, 1958.

⁽¹⁾ The investigation has been done at Harvard University with support from the National Science Foundation: NSF Grant, G 2268.

where α , β , γ and $\delta \neq 0$ are elements of a finite field F of characteristic 2. We take N_0 as the totality of $M(\alpha, \beta, \gamma; \delta)$. Let q be the number of elements contained in F so that $q = 2^{\mu}$.

The matrix multiplication may be written as

$$M(\alpha, \beta, \gamma; \delta) M(\alpha', \beta', \gamma'; \delta') = M(\alpha'', \beta'', \gamma''; \delta'')$$

where

$$\alpha'' = \alpha + \delta \alpha', \qquad \beta'' = \beta + \gamma \alpha' + \beta', \qquad \gamma'' = \gamma \delta' + \gamma' \text{ and } \delta'' = \delta \delta'.$$

Hence the mapping ϕ of N_0 defined by $\phi(M(\alpha, \beta, \gamma; \delta)) = \delta$ is a homomorphism of N_0 onto the multiplicative group of nonzero elements of F. The kernel of ϕ is the totality of $M(\alpha, \beta, \gamma; 1)$ and is of course a 2-group of order q^3 . Thus we have the following proposition.

(I) N_0 contains a normal subgroup Q of order q^3 and the factor group N_0/Q is a cyclic group of order q-1.

Furthermore from the matrix multiplication we conclude the following propositions, which may be proved by computation.

- (II) $M(\alpha, \beta, \gamma; 1)^2 = M(0, \alpha\gamma, 0; 1)$. In particular $M(\alpha, \beta, \gamma; 1)$ is an involution if $\alpha\gamma = 0$; otherwise the order is 4.
- (III) The center C of Q is of order q consisting of elements $M(0, \beta, 0; 1)$, and C is the center of N_0 .
- (IV) The centralizer of each element $\neq 1$ of N_0 with an order a divisor of q-1 is an abelian group of order q(q-1).
- (V) The centralizer of each element of order 4 in N_0 is an abelian group of order q^2 .

Let P be the subgroup of Q consisting of matrices $M(\alpha, \beta, 0; 1)$ and L be the subgroup corresponding to the totality of matrices $M(0, \beta, \gamma; 1)$.

- (VI) Both P and L are abelian groups of order q^2 consisting of elements of order ≤ 2 . They are normal in Q.
- (VII) Every involution of N_0 is contained in either P or L and the intersection of P and L is the center C.

These two propositions are obvious from the property (II) and the definition of P and L.

(VIII) Involutions of P not contained in C are conjugate to each other in N_0 . The same property holds for L.

Proof. We have $M(0, 0, \lambda; \delta^{-1})^{-1} = M(0, 0, \delta\lambda; \delta)$ and

$$M(0, 0, \lambda; \delta^{-1})M(\alpha, \beta, 0; 1)M(0, 0, \delta\lambda; \delta) = M(\delta^{-1}\alpha, \lambda\alpha + \beta, 0; 1).$$

Hence if $M(\alpha, \beta, 0; 1)$ is not in C then $\alpha \neq 0$ and we may take λ and δ in such a way that $\delta = \alpha$ and $\lambda \alpha + \beta = 0$. Hence every involution of P not contained in C is conjugate to M(1, 0, 0; 1) and this is the statement (VIII).

Since $Q = P \cup L$, Q/C is a direct product of P/C and L/C.

(IX) The factor group Q/C is an abelian group of order q^2 and of type $(2, \dots, 2)$.

Finally we shall prove the following proposition.

(X) The commutator subgroup of N_0 is Q if q > 2.

Since N_0/Q is a cyclic group the commutator subgroup N_0' of N_0 is a part of Q. Since $M(\alpha-1,\beta,0;1)M(1,0,0;1)=M(\alpha,\beta,0;1)$, we see that if $\alpha\neq 1$ and 0, $M(\alpha,\beta,0;1)$ is a commutator in N_0 (cf. the computation in (VIII)). If q>2, the field F contains an element α which is neither 0 nor 1. Then $M(\alpha,\beta,0;1)$ is an involution of P which is not in C and is a commutator. Hence by (VIII) every involution of P not contained in C is a commutator. Thus the commutator subgroup N_0' contains P. Similarly L is a part of N_0' and hence $Q=P\cup L\subseteq N_0'$.

- 2. Let G be a finite group of even order, and τ be an involution of G. In the rest of this paper we assume the two conditions (A) and (B):
 - (A) the centralizer N_0 of τ in G is isomorphic with Ω/Δ ;
 - (B) every involution of G is conjugate to τ in G.

We shall use the same notations introduced in the first section; i.e. C stands for the center of N_0 , Q the 2-Sylow subgroup of N_0 and P or L is the subgroup of Q as defined in the §1.

Proposition 1. Q is a 2-Sylow subgroup of G.

Proof. By way of contradiction suppose that Q is a proper subgroup of a 2-Sylow subgroup Q^* of G. We can take a subgroup Q' of Q^* such that [Q':Q]=2. By a property of 2-groups Q is a normal subgroup of Q'. Since C is the center of Q, it is a characteristic subgroup of Q. Hence C is a normal subgroup of Q'. Again by a property of 2-groups we see that C contains a central element $\tau'\neq 1$ of Q'. By the assumption (B) τ' is conjugate to τ in G and hence the centralizer of τ' is isomorphic with N_0 . Since τ' is in the center of Q' we conclude that a 2-Sylow subgroup of the normalizer of τ' has a greater order than Q. This is impossible.

PROPOSITION 2. P is never conjugate to L in G.

Proof. By way of contradiction suppose that there is an element $\pi \in G$ such that $\pi P \pi^{-1} = L$. Then $\pi Q \pi^{-1}$ and Q are 2-Sylow subgroups of the normalizer of L by (VI) and Proposition 1. Hence there is an element ρ such that $\rho L \rho^{-1} = L$ and $\rho \pi Q \pi^{-1} \rho^{-1} = Q$. Put $\sigma = \rho \pi$. We have $\sigma P \sigma^{-1} = \rho \pi P \pi^{-1} \rho^{-1} = \rho L \rho^{-1} = L$ and $\sigma Q \sigma^{-1} = Q$. Hence $\sigma L \sigma^{-1}$ is a subgroup of Q consisting of elements of order ≤ 2 . By the property (VII) of the first section $\sigma L \sigma^{-1} = P$. Hence some power σ_1 of σ has an order a power of 2 and still exchanges P and P0 and P1 generate a 2-group. By Proposition 1 P2 is a 2-Sylow subgroup of P3 and hence P4 contains P5. Since both P5 and P6 are normal subgroups of P7 by (VI) of §1, we get a contradiction.

3. If q=2, the group N_0 is a dihedral group of order 8. Hence N_0 contains an element π of order 4 such that $\tau=\pi^2$. Since N_0 is the centralizer of τ in G, the centralizer of π in G is a part of N_0 and hence coincides with the cyclic

group generated by π . The structure of a finite group possessing such a property is known (cf. [7]). From the results of [7] we conclude that G is isomorphic with either $LF(2, 7) \cong LF(3, 2)$ or $LF(2, 9) \cong A_6$, the alternating group on six letters. In fact a direct proof of this result can be carried through by using a method similar to the one in [7] and it is much easier. We shall however not enter in this special case. Hereafter we assume in addition to the assumptions (A) and (B) the following one:

- (C) q is greater than 2.
- 4. Let M be the normalizer of the subgroup P in G. We want to prove the following proposition in this section.

PROPOSITION 3. The factor group M/P is isomorphic with the general linear group consisting of all the 2×2 nonsingular matrices over F.

First of all we consider the normalizer of Q in G.

Proposition 4. Let N be the normalizer of a 2-Sylow subgroup Q of G. Then $[N: N_0] = q - 1$.

Proof. If τ' is an involution of C, τ' is conjugate to τ in G. By a lemma of Burnside [4, §123] τ' is conjugate to τ in N. Hence $[N:N_0] \ge q-1$. On the other hand if σ and σ' are two elements of N which transform τ into τ' , then σ and σ' are in the same coset modulo N_0 . Hence $[N:N_0] \le q-1$, whence the equality follows.

PROPOSITION 5. If Q and Q' are two different 2-Sylow subgroups of G containing P, then we have $Q \cap Q' = P$.

Proof. By way of contradiction suppose that the intersection $D = Q \cap Q'$ contains P as a proper subgroup. Then $L_0 = D \cap L$ contains C properly. Since Q/C is abelian by (IX) of the first section L_0 is a normal subgroup of D. Since every involution of D is either in P or L_0 , $C = L_0 \cap P$ is a characteristic subgroup of D. This implies that C is a normal subgroup of Q'. By a property of 2-groups C contains a central element τ' of Q'. Hence the centralizer of τ' contains Q'. On the other hand the centralizer of τ' is N_0 which contains Q as a normal subgroup. We have therefore Q = Q'.

We now prove Proposition 3. The group Q/P is a 2-Sylow subgroup of M/P. By the assumption (C) q is greater than 2. Hence Q/P is not cyclic by (IX) of §1. We shall show that Q/P is not a normal subgroup of M/P. By the assumption (B) a central involution τ of Q is conjugate to an involution τ_1 of P is not contained in P. The centralizer of P contains a normal subgroup P of order P is a 2-Sylow subgroup of P containing P. Since P is not in the center of P by (III) of the first section P is different from P. Hence P is another 2-Sylow subgroup of P which shows the nonnormality of P is abelian. Take any involution P of P and consider the centralizer

of τ' in M/P. This centralizer has the form U/P where U is a subgroup of G. If $\sigma \in U$, Q/P and $\sigma Q \sigma^{-1}/P$ are two 2-Sylow subgroups of M/P containing σ' . Hence $Q \cap \sigma Q \sigma^{-1} \supset P$. By Proposition 5 we have $Q = \sigma Q \sigma^{-1}$; i.e. U is contained in the normalizer N of Q. By the splitting theorem of Schur [9, p. 125] U contains a subgroup V such that U = QV and $Q \cap V = e$. V is then a group of odd order. Let T/P be the subgroup generated by τ' . V is considered as an operator domain acting on T. $T_1 = T \cap L$ is abelian group of type $(2, \cdots, 2)$ and contains all the involutions of T not in P. Hence T_1 is left invariant by V. The group T_1 is completely decomposable as a V-module. Since C is an invariant subgroup of T_1 , T_1 contains a subgroup T_2 such that $T_1 = T_2C$, $T_2 \cap C = e$ and T_2 is V-invariant. The isomorphism theorem yields $T_2 \cong T_1/C$ $\cong T/P$. Hence T_2 is a group of order 2 generated by an involution τ_2 . Since T_2 is V-invariant, τ_2 commutes with every element of V. Thus V is a subgroup of odd order contained in the centralizer N_2 of τ_2 . By assumptions (A) and (B) V is a cyclic group. The center C_2 of N_2 is an abelian group of order q contained in L (cf. (III) and (VII)). Since $C_2 \cap C = e$, we have $L = C_2 \cup C$. The subgroup $V \cup C_2$ is an abelian group by (IV) of the first section. We have $P \cup (V \cup C_2) = P \cup C_2 \cup V = P \cup L \cup V = Q \cup V = U$. By the isomorphism theorem we assert that $U/P \cong (C_2 \cup V)/(C_2 \cup V) \cap P$, and U/P is abelian. Thus we have shown the commutativity of the centralizer of any involution in M/P.

By the main theorem of [8] M/P is a direct product of a linear fractional group $LF(2, 2^r)$ and an abelian group A of odd order. Since Q/P is a 2-Sylow subgroup the linear group which is a direct factor must be LF(2, q). The centralizers of involutions are direct products of 2-Sylow subgroups and A. In our case $U/P\cong (Q/P)\times (VP/P)$. Hence $A\cong V$. The normalizer of a 2-Sylow subgroup of M/P has the form N/P, where N is the normalizer of a 2-Sylow subgroup of G. Hence by the Proposition 4 it has an order $q(q-1)^2$. On the other hand this normalizer is a direct product of VP/P and a subgroup of order q(q-1). Hence the order of V is q-1. Since V is cyclic M/P is isomorphic with the general linear group consisting of all the 2×2 nonsingular matrices over F.

5. The object of this section is to determine the order of G using the result of 2 of 8.

Let V be the subgroup of order q-1 defined in the previous section. Put W=PV. From the result of the preceding section W/P is the center of M/P. In particular W is a normal subgroup of M. Let H be the normalizer of V in M. If $\rho \in M$, $\rho V \rho^{-1}$ is a subgroup of W. Since W=PV and P is a normal subgroup, we may apply Theorem 26 of [9, p. 126] to see that $\rho V \rho^{-1}$ and V are conjugate in W; there is an element π of W such that $\pi \rho V \rho^{-1} \pi = V$. Thus $\pi \rho \in H$; in other words M=WH. Since $H \supseteq V$, M=WH=PVH=PH. We shall show that $H \cap P=e$. If $H \cap P \neq e$, $H \cap P$ contains an involution τ_1 which commutes with every element of V. Then the central-

izer N_1 of τ_1 in G contains V. Hence N_1 contains $P \cup V = W$. On the other hand P is a normal subgroup of N_1 and hence $N_1 \subseteq M$. Since W is a normal subgroup of M, W is also a normal subgroup of N_1 . Since $N_1 = Q_1W$ with the 2-Sylow subgroup Q, of N_1 , the factor group N_1/W is an abelian group, which contradicts (X) of the first section. Hence by the isomorphism theorem $H \cong M/P \cong LF(2, q) \times V$.

We want to apply Propositions 5 and 6 of [8] to M and V. The second assumption in these propositions is satisfied because of our assumptions (A) and (B). The third one follows trivially since the order of V is q-1. As for the first condition we need only to show that H is the normalizer of any subgroup $V_0 \neq e$ of V. First of all we prove the following proposition.

PROPOSITION 6. If X is a 2-Sylow subgroup of H, X is a 2-Sylow subgroup of the centralizer of V_0 .

Proof. Let τ be an involution contained in X. By the assumptions (A) and (B) of the second section of this paper the centralizer of τ in G is isomorphic with N_0 . X is contained in a 2-Sylow subgroup Y of the centralizer of V_0 . Since $V_0 \neq e$, Y does not contain elements of order 4 by (V) of the first section. Hence Y consists of elements of order ≤ 2 and is abelian. Therefore Y and V_0 are contained in the centralizer of τ . By (IV) the order of Y is not greater than q; i.e. X = Y.

Proposition 7. The normalizer of V_0 in G coincides with the centralizer of V_0 .

Proof. Suppose that two elements σ and σ' of V_0 are conjugate: $\sigma' = \pi \sigma \pi^{-1}$. Consider a 2-Sylow subgroup X of H. X is by Proposition 6 a 2-Sylow subgroup of the centralizer of σ and at the same time of σ' . Hence X and $\pi X \pi^{-1}$ are two 2-Sylow subgroups of the centralizer of σ' . There is an element ρ such that $\rho \sigma' = \sigma' \rho$ and $X = \rho \pi X \pi^{-1} \rho^{-1}$. If τ is an involution of X, τ is conjugate to $\rho \pi \tau \pi^{-1} \rho^{-1}$ in H which is a part of the centralizer of σ' . Hence there is an element ρ' such that $\rho' \sigma' = \sigma' \rho'$ and $\tau = \rho' \rho \pi \tau \pi^{-1} \rho^{-1} \rho'^{-1}$. This means that σ and σ' are conjugate in the centralizer of τ . By the structure of N_0 this happens only if $\sigma = \sigma'$. Thus our assertion has been proved.

Let H' be the normalizer of V_0 in G. By Proposition 7 H' is the centralizer of V_0 . Let τ be any involution of H'. By Proposition 6 τ is conjugate in H' to an element of H. Hence we assume τ is an element of H. Let A be the centralizer of τ in H'. Thus A is the intersection of the centralizers of τ and $1 \neq \sigma \in V_0$. By the property (IV) (together with assumptions (A) and (B)) we conclude that A is an abelian group of order q(q-1). Again by the main theorem of [8] H' is a direct product of a linear group and an abelian group. The linear group in the direct factor must be LF(2, q), while the abelian part has order q-1. Comparing the orders we get H'=H.

We have proved that every assumption of Proposition 6 of [8] is satisfied.

From this proposition we conclude that G has irreducible characters X and Y_i ($i=1, 2, \cdots, t=q/2$) satisfying relations $X(\sigma) + \epsilon = Y_i(\sigma)$ ($\epsilon = \pm 1$) for all elements σ of an order relatively prime to q+1, and the order g of G is

$$g = n^2 m(q+1) f(f+\epsilon) / h(f-a)^2$$

where n is the order of the centralizer of an involution τ in G, hm(q+1) is the order of some subgroup, m is an integer, $m \equiv 1 \pmod{2h}$, f is the degree of X, h is the order of V and $a = X(\tau)$. Moreover we have t = q/2 > 1 and hence $f \equiv \epsilon \pmod{m(q+1)}$. The congruence for m is a consequence of (iii) in Proposition 5 of [8]. In our case $n = q^3(q-1)$ and n = q-1. Thus

$$g = q^{6}(q-1)(q+1)mf(f+\epsilon)/(f-a)^{2}$$
.

A 2-Sylow subgroup Q has an order q^3 and P is a subgroup of order q^2 consisting of elements of order ≤ 2 . It follows that g is divisible by q^3 and $f \equiv a \pmod{q^2}$. The last congruence is proved by summing X over P. Hence the denominator in the expression of g is divisible by q^4 . Hence $f(f+\epsilon)$ must be a multiple of q. Therefore q divides $f+\epsilon$ or f. We distinguish two cases accordingly.

Case I. q is a divisor of $f+\epsilon$. This case is proved to be impossible. Let 2^{λ} and 2^{ν} be the highest power of 2 dividing $f+\epsilon$ and f-a respectively. Put $f+\epsilon=2^{\lambda}u$ and $f-a=2^{\nu}v$. We have $\nu \geq 2\mu$ since $f\equiv a \pmod{q^2}$, and $\lambda \geq \mu$ by assumption, where $2^{\mu}=q$. We may write $\lambda=\mu+\lambda'$ and $\nu=2\mu+\nu'$ (λ' , $\nu'\geq 0$). Counting the exponent of 2 dividing the order formula we get

$$3\mu = 6\mu + \lambda - 2\nu = 6\mu + \mu + \lambda' - 4\mu - 2\nu' = 3\mu + \lambda' - 2\nu'$$

Suppose $\nu \leq \lambda$. Then $2\mu + \nu' \leq \mu + \lambda' = \mu + 2\nu'$ or $\mu \leq \nu'$. Hence we have λ , $\nu \geq 3\mu$. Since $f + \epsilon$ is the degree of Y_i , we have $\lambda \leq 3\mu$. Hence $\lambda = \nu = 3\mu$, $f + \epsilon = q^3u$ and $f - a = q^3v$. The character Y_i is of the highest kind (cf. [3]) so that it vanishes on 2-singular elements: $Y_i(\tau) = a + \epsilon = 0$. Hence $f + \epsilon = f - a = q^3u$. The order formula now reads $g = q^3(q-1)(q+1)m(q^3u - \epsilon)/u$. Since $(q^2-1)m$ is an order of a subgroup, $q^3(q^3u - \epsilon)/u$ is an integer. Since u is odd we must have u=1. Since g is divisible by $(q-1)^2$ and $m\equiv 1\pmod{q-1}$, we conclude that $q^3-\epsilon$ is divisible by q-1. Since $q-1\geq 3$, ϵ must be 1. From the congruence $f\equiv \epsilon\pmod{q+1}$ we get $q^3\equiv 2\pmod{q+1}$, or $3\equiv 0\pmod{q+1}$. This is impossible since we have assumed q>2.

Next assume that $\nu > \lambda$. Let π be an element of order 4 of Q. Then the centralizer of π in G has an order q^2 . Hence every element of order 4 of N is conjugate to π in N. Let $b = X(\pi)$. The orthogonality relation yields that $f + (2q^2 - q - 1)a + q(q - 1)^2b \equiv 0 \pmod{q^3}$. Since $f \equiv a \pmod{q^2}$ we get $a \equiv b \pmod{q}$. This congruence is valid in any case. In Case I we have $f + \epsilon \equiv 0 \pmod{q}$. Hence $a + \epsilon = f + \epsilon - (f - a) \equiv 0 \pmod{q}$. On the other hand $Y_i(\pi) = b + \epsilon \equiv a + \epsilon \equiv 0 \pmod{q}$. The orthogonality relation yields that $q^2 = \sum_{\mu} |X_{\mu}(\pi)|^2$ where the summation ranges over all the irreducible char-

acters of G. Hence $q^2=1+b^2+(b+\epsilon)^2(q/2)+\cdots$. In particular $(b+\epsilon)^2< q^2$. Since $b+\epsilon\equiv 0\pmod q$ we get $b+\epsilon=0$. Summing Y_{ϵ} over Q we get $f+\epsilon+(2q^2-q-1)(a+\epsilon)\equiv 0\pmod q^3$, or $f-a+(a+\epsilon)q(2q-1)\equiv 0\pmod q^3$. Our assumption was $\nu>\lambda$. By definition 2^{λ} is the highest power of 2 dividing $f+\epsilon$ and 2^{ν} is the highest power of 2 dividing f-a. Since $\nu>\lambda$, 2^{λ} is the highest power of 2 dividing $a+\epsilon$. Hence $a+\mu$ is the exact exponent of 2 dividing $a+\epsilon$. Hence we have assumed $a+\epsilon$ 0. We conclude therefore $a+\epsilon=qu$ and $a+\epsilon=qv$ 0. Then $a+\epsilon=qv$ 0 where $a+\epsilon=qv$ 1.

From the orthogonality relation it follows that $\sum_{\mu} |X_{\mu}(\tau)|^2 = q^3(q-1)$ where the summation ranges over all the irreducible characters of G. Since $Y_i(\tau) = a + \epsilon = qw$ we have $q^2w^2(q/2) < q^3(q-1)$ or $w^2 < 2(q-1)$. From the order formula $g = q^{6}(q-1)(q+1)mfqu/q^{4}v^{2} = q^{3}(q-1)(q+1)mfu/v^{2}$. As before $fu \equiv 0 \pmod{q-1}$. Since $f = qu - \epsilon$, f and u have no common divisor. We may write q-1=st, (s, t)=1, so that f=sf' and u=tu'. Since $(q^2-1)m$ is the order of a subgroup v^2 is a divisor of fu. Let $v = v_1 v_2$, $v_1^2 | f$ and $v_2^2 | u$. Then v_1 and v_2 are relatively prime. Moreover v_1 is relatively prime to m(q+1) since $f \equiv \epsilon \pmod{m(q+1)}$. The degree f of X is a divisor of g and therefore we conclude that v_1^2 is a divisor of q-1. Since (f, u) = 1, v_1^2 is a divisor of s. Similarly v_2 is prime to m(q+1). Hence v_2^2 is a divisor of t. Altogether we conclude that v^2 is a divisor of q-1. The congruence $f-a+(a+\epsilon)q(2q-1)\equiv 0 \pmod{q^3}$ implies that $q^2v+q(u-qv)q(2q-1)\equiv 0 \pmod{q^3}$ or $v\equiv u\pmod{q}$. Thus we have three relations for u and $v: u \equiv v \pmod{q}$, $v^2 \mid q-1$ and $(u-qv)^2 < 2(q-1)$. If q > 8, we get $v \le (q-1)/2$ and $|u-qv| \le (q-1)/2$. Hence u = (1+q)v. If q = 4or 8, then v=1 and we get the same conclusion. This is however impossible because $f + \epsilon = qu = q(1+q)v \equiv 2\epsilon \pmod{m(1+q)}$, or $2\epsilon \equiv 0 \pmod{1+q}$. Thus we have shown the impossibility of Case I.

Case II. q is a divisor of f. We write as $f=2^{\lambda}u$ and $f-a=2^{\nu}v$ with odd integers u and v. By assumption $\lambda=\mu+\lambda'$ and $\nu=2\mu+\nu'$ with non-negative integers λ' and ν' . Counting the exponent of 2 dividing both sides of the order formula we get $\lambda'=2\nu'$. Suppose $\lambda<\nu$. Then $\nu'<\mu$ and $3\mu>\nu$. Use the same argument as before. This time we get $X(\pi)=b=0$. The highest exponent of 2 dividing a is λ . Hence as before $\lambda+\mu=\nu$ and $\nu'=0$. Thus f=qu, $f-a=q^2v$ and a=q(u-qv). Using the orthogonality relation we get $(u-qv)^2<(2(q-1))$. This inequality may be proved as follows. Let w=u-qv. Then a=qw. Hence $a^2+(a+\epsilon)^2(q/2)< q^3(q-1)$; or $2qw^2+(qw-1)^2< 2q^2(q-1)$. If $w^2\geq 2(q-1)$, then $2qw^2-2qw+1<0$ which is impossible for integral values of w. The congruence $u\equiv v\pmod q$ follows by summing X over Q. By the same argument as in Case I we see that v^2 is a divisor of q-1. Hence u=(q+1)v as before, which is again impossible.

Thus we must have $\lambda \ge \nu$. Hence $\lambda \ge 3\mu$. Since f is a degree of X, $\lambda \le 3\mu$ and hence we get $\lambda = 3\mu$ and $\nu' = \mu$. We have now $f = q^3u$. X is therefore of the

highest kind and hence vanishes on 2-singular elements. In particular $X(\tau)=a=0$. The order formula now reads $g=q^3(q-1)(q+1)m(q^3u+\epsilon)/u$. As before u is a divisor of $q^3u+\epsilon$ and hence u=1. Since $q^3+\epsilon$ is a multiple of q-1, ϵ must be -1. The congruence $f\equiv -1\pmod{m(q+1)}$ implies that m is a divisor of q^2-q+1 . On the other hand $m\equiv 1\pmod{2(q-1)}$. We have therefore $q^2-q+1=m\{l(q-1)+1\}=\{2k(q-1)+1\}\{l(q-1)+1\}$ or q=2kl(q-1)+2k+l. Hence kl=0. We have either k=0 or l=0. This means that either m=1 or $m=q^2-q+1$. We have shown the validity of the following:

PROPOSITION 8. Let M be the normalizer of P (cf. Proposition 3). Then the index of M is either q^2+q+1 or q^4+q^2+1 .

6. In this section we consider the case $[G:M]=q^4+q^2+1$, i.e. the case $m=q^2-q+1$. This case turns out to be impossible. In order to prove the impossibility we shall return to the situation of the §2 of [8].

As shown in §2 of [8] the normalizer R of a subgroup R_0 of order q+1 of H is of order 2(q-1)m(q+1). We may assume that $R\supseteq V$, the subgroup of order q-1 defined in the §4. R contains a normal subgroup R_1 of order 2m(q+1) and R_1 has a normal subgroup R_2 of index 2. R_2 is an abelian group. Every element $\neq 1$ of V induces an automorphism of R_2/R_0 which leaves only the identity fixed. Hence every element $\neq 1$ of R_2/R_0 has exactly q-1 elements which are conjugate under the action of V on R_2/R_0 . Hence every characteristic subgroup of R_2/R_0 has an order congruent to 1 modulo q-1. Since $m=q^2-q+1< q^2$, we conclude that R_2/R_0 is characteristically simple. This implies that m is a power of a prime number $p: m=p^n$. Suppose n>1. Then $p^n-1=(p-1)(p^{n-1}+\cdots+1)=q(q-1)$. If $p\equiv 1\pmod{q}$, $p^n-1\geq p^2-1=(p-1)(p+1)\geq q(q+2)>q(q-1)$; a contradiction. Hence $p^{n-1}+\cdots+1\equiv n\equiv 0\pmod{2}$. Then $p^n-1=(r-1)(r+1)=q(q-1)$. We get $r\geq q\geq r+1$ which is clearly impossible. Thus n=1 and $m=q^2-q+1=p$ is a prime number.

Let π be an element of order p. From the result in [8, §2] it follows that the centralizer of π is R_2 . Hence p divides the order p to the first power only. We may therefore apply the results of p. Brauer [1].

In $[8, \S 2]$, we have shown G has irreducible characters Φ_{ik} , Ξ_k , H_k and Θ_j $(i=1, 2, \cdots, t=q/2; k=1, 2, \cdots, q-1; j=1, 2, \cdots, s; s=(m-1)(q+1)/2(q-1)=q(q+1)/2)$ and all the rest of characters of G vanish on p-singular elements. So they constitute the totality of irreducible characters in the p-blocks of positive defect. By Theorem 8 of [1] G has exactly 2(q-1)+t(q-1)+s characters of degree not divisible by p. Hence we conclude that all the characters Φ_{ik} , Ξ_k , H_k and Θ_j are actually different. In particular Ξ_k and H_k appear only in ψ_{ik}^* in the notation of $[8, \S 2]$. Hence we have $\Xi_k(\sigma) = \epsilon_k'$ and $H_k(\sigma) = \epsilon_k''$ for $1 \neq \sigma \in R_2$. The formula for the coefficient $A(\sigma)$ of $\langle \rho \sigma \rangle$ in the expansion of $\langle \tau \rangle^2$ in the group ring is now

$$A(\sigma) = ((q^{2} + q + 1)m(q + 1)/q^{3}) \sum_{k=1}^{q-1} \{\Xi_{k}(\tau)^{2}/\Xi_{k}(1))\epsilon_{k}' + (H_{k}(\tau)^{2}/H_{k}(1))\epsilon_{k}'' - (\Phi_{ik}(\tau)^{2}/\Phi_{ik}(1))\epsilon_{k}\}\omega_{k}(\sigma)$$

where $\rho \neq 1$, $\rho \in R_0$, $\sigma \in V$ and $\omega_k(\sigma)$ are the irreducible characters of V. Hence using the orthogonality relation and the value of g we conclude that $(q^3 - 1)(\Xi_k(\tau)H_k(1) - \Xi_k(1)H_k(\tau))^2 = q^3\Xi_k(1)H_k(1)\Phi_{ik}(1)$. Let $f_1 = \Xi_k(1)$, $f_2 = H_k(1)$, $a_1 = \Xi_k(\tau)$ and $a_2 = H_k(\tau)$. Then $\Phi_{ik}(1) = \epsilon(\epsilon_1 f_1 + \epsilon_2 f_2)$ where $\epsilon = \epsilon_k$, $\epsilon_1 = \epsilon_k'$ and $\epsilon_2 = \epsilon_k''$. We have the relation

$$(q^3-1)(a_2f_1-a_1f_2)^2=q^3f_1f_2(\epsilon_2f_1+\epsilon_1f_2).$$

As before we have $f_i \equiv a_i \pmod{q^2}$. If $b_1(b_2)$ is the value of Ξ_k (or H_k) on elements of order 4, $b_i \equiv a_i \pmod{q}$ and $|b_i| < q$. Summing Ξ_k (or H_k) over R_1 we get $f_i + \epsilon_i(q^3 + 1 - 1) + a_i(q^3 + 1) \equiv 0 \pmod{2(q^3 + 1)}$. Set

$$f_i + \epsilon_i q^3 + a_i (q^3 + 1) = 2k_i (q^3 + 1).$$

Then $2k_i \equiv f_i + a_i \equiv 2a_i \pmod{q^2}$. Hence $f_i = \epsilon_i + (q^3 + 1)(a_i - \epsilon_i + l_i q^2)$. In order to simplify the notations we shall drop the suffix i for a while. If l is negative, then $a - \epsilon + lq^2$ is negative (since $|a| < q^2 - 1$), which is impossible. If l > 1, $a - \epsilon + lq^2 > q^2$. Hence $f^2 > (q^3 + 1)^2 q^4 > q^3 (q - 1)(q^3 + 1)(q^3 - 1) = g$ which is impossible. If l = 1, then $f = \epsilon + (q^3 + 1)(q^2 + a - \epsilon)$, $f \equiv q^2 + a \pmod{q^3}$ and $a \leq 0$. By summing Ξ_k (or H_k) over Q we get

$$f + (2q^2 - q - 1)a + (q^3 - 2q^2 + q)b \equiv 0 \pmod{q^3}$$

or $f-a+(2q-1)q(a-b)\equiv 0 \pmod{q^3}$. Hence $a\equiv b+q \pmod{q^2}$. Since |b|< q, we get b+q>0 and hence $a=b+q-q^2$. The degree f is now written as $f=\epsilon$ $+(q^3+1)(q+b-\epsilon)=(q^3+1)(q+b)-\epsilon q^3$. f is a divisor of g. From the form of f we see that $(f, q^3+1)=1$ and $f\equiv b \pmod{q}$. If $f\equiv 0 \pmod{q}$, we get $b \equiv 0 \pmod{q}$ and hence b = 0. Then $f = q + q^3(q - \epsilon)$ is a divisor of $q(q - 1)(q^3 - 1)$. Since $f \equiv 1 + 1 - \epsilon \pmod{q-1}$, either f is relatively prime to q-1 or (f, q-1)= 3. Hence $1+q^2(q-\epsilon) \le 3(q^2+q+1)$ or $q-\epsilon < 5$. Hence q=4 and $\epsilon=1$. The value of f is 4.49 which is not a divisor of g. Hence $f \not\equiv 0 \pmod{q}$. Let $b = 2^{\lambda}c$, $c \not\equiv 0 \pmod{2}$. Then $2^{\lambda} < q = 2^{\mu}$. Let q + b = x. f is a divisor of $2^{\lambda}(q - 1)(q^3 - 1)$. We have therefore $fh = 2^{\lambda}(q-1)(q^3-1)$ with some integer h. Reducing modulo $2^{\lambda}q$ we get $h(q+b) \equiv 2^{\lambda} \pmod{2^{\lambda}q}$. Hence $h(2^{\mu-\lambda}+c) \equiv 1 \pmod{q}$. Hence we get $(1+kq)f = (1+kq)\{(q^3+1)x - \epsilon q^3\} = x(q-1)(q^3-1)$. Here k is a non-negative integer and $1 + kq = h(2^{\mu - \lambda} + c)$. If k = 0, we have $(q^3 + 1)x - \epsilon q^3 = x(q - 1)(q^3 - 1)$. Hence $2q^3+1 \ge (q-1)(q^3-1)$, or 4>q which is not the case. Hence k>0. If $\epsilon = -1$, we get 1 + kq > q - 1 and $(q^3 + 1)x + q^3 > x(q^3 - 1)$ which contradict the above equality. Hence $\epsilon = 1$. Expanding both sides we get

$$q^3x+x-q^3+q^4kx+qkx-q^4k=q^4x-q^3x-qx+x;$$

$$q^3(k-1)(x-1)+q^2(2x-1)+(k+1)x=q^3.$$
 Hence either $k=1$ or $x=1$. If

k=1, 1+q is a divisor of $x(q-1)(q^3-1)$. Since $(q+1, q-1)=(q+1, q^2+q+1)=1, 1+q$ is a divisor of x. Now 1+q divides b-1=x-q-1. Since |b|<q, b=1 and x=1+q. Hence $q^2(2q+1)+2(q+1)=q^3$ which implies that q is a divisor of 2. This is not the case. If x=1, the degree $f=(q^3+1)-q^3=1$. This implies that $a=\pm 1=1-q^2$ which is impossible. Thus in any case the assumption l=1 leads to a contradiction. The only possible degree is of the form $f=\epsilon+(q^3+1)(a-\epsilon)=a+q^3(a-\epsilon)$.

Consider the relation (*). We have here $f_i = a_i + q^3(a_i - \epsilon_i)$ (i = 1, 2). Hence $a_2f_1 - a_1f_2 = q^3(a_1\epsilon_2 - a_2\epsilon_1)$. Let 2^{λ_i} (i = 1, 2) be the highest power of 2 dividing a_i . Assume that $2^{\lambda_i} < q^3$ for i = 1, 2. If $\lambda_1 > \lambda_2$, $a_1\epsilon_2 - a_2\epsilon_1$ and $\epsilon_2a_1 + \epsilon_1a_2$ are divisible exactly by 2^{λ_2} . Hence the exponent of 2 dividing the left hand side of (*) is exactly $6\mu + 2\lambda_2$, while the right side is divisible by only $3\mu + \lambda_1 + 2\lambda_2 < 6\mu + 2\lambda_2$. We get a similar contradiction in case of $\lambda_1 < \lambda_2$. Suppose $\lambda_1 = \lambda_2$. Let 2^{λ_3} and 2^{λ_4} be the exact powers of 2 dividing $\epsilon_1a_2 + \epsilon_2a_1$ and $\epsilon_1a_2 - \epsilon_2a_1$ respectively. Both λ_3 and λ_4 are greater than λ_1 but one of them is equal to $\lambda_1 + 1$. If $\lambda_3 = \lambda_1 + 1$, then $\lambda_4 > \lambda_3$. Considering the exponents of 2 dividing both sides of (*) we get $3\mu + \lambda_1 + \lambda_2 + \lambda_3 = 6\mu + 2\lambda_4 > 6\mu + 2\lambda_3$, or $\lambda_1 > 3\mu + 1$ which is impossible. If $\lambda_4 = \lambda_1 + 1$, then the exponent of 2 dividing $\epsilon_2 f_1 + \epsilon_1 f_2$ is $3\mu + 2$. This is impossible since $\epsilon_2 f_1 + \epsilon_1 f_2$ is a degree of an irreducible character. Thus at least one of λ_i , say λ_1 , must be greater than 3μ ; in other words $a_1 \equiv 0 \pmod{q^3}$. Since $|a_1| < q^2$ we have $a_1 = 0$. Then the degree f_1 is $-\epsilon_1 q^3$. Hence $f_1 = q^3$ and $\epsilon_1 = -1$. The relation (*) is now

$$(q^3-1)a_2^2=f_2(\epsilon_2q^3-f_2).$$

Since $\epsilon_2 q^3 - f_2 > 0$, we have $\epsilon_2 = 1$ and $f_2 < q^3$. Hence $f_2 = a_2 + q^3(a_2 - 1) = a_2(q^3 + 1) - q^3 < q^3$, which implies that $a_2 = 1$ and $f_2 = 1$.

Our result may be summarized as follows: In suitable notations the Ξ_k are linear and $\Xi_k(\tau)=1$, $\epsilon_k'=1$, and the H_k are of degree q^3 and $\epsilon_k''=-1$. Hence the degree of Φ_{ik} is q^3-1 and $\Phi_{ik}(\tau)=-1$, $\epsilon_k=-1$. For the element σ of order 4 we have $\Xi_k(\sigma)=1$ and $\Phi_{ik}(\sigma)=-1$. From the values of characters we see that Ξ_k and H_k belong to the first p-block B of G. B contains q/2 more characters which are p-conjugate to each other (cf. [1]). If Θ is one of the characters in the exceptional family of B, Θ must be one of the Θ_j in our notation. We have a relation $\pm \Theta + \sum \delta_k \Xi_k + \sum \delta_k' H_k = 0$ valid for all p-regular elements. Here δ_k and δ_k' are ± 1 and they are determined by the conditions $\Xi_k(1) \equiv \delta_k$ and $H_k(1) \equiv \delta_k' \pmod{p}$. Since $p = q^2 - q + 1$, we have $\delta_k = 1$ and all the $\delta_k' = -1$. Hence in particular for the element σ of order 4 we get $\pm \Theta(\sigma) = q - 1$. This is however impossible because $q^2 = \sum |X_\mu(\sigma)|^2 \ge \sum_j |\Theta_j(\sigma)|^2 = q(q-1)^2/2$. Hence

PROPOSITION 9. The value of m must be 1.

7. From Proposition 9 we conclude the following proposition.

PROPOSITION 10. Let G be a finite group satisfying conditions (A), (B) and (C). Then the order of G is $g = q^3(q-1)(q+1)(q^3-1)$. G contains a subgroup M of index q^2+q+1 which is the normalizer of an elementary abelian group P of order q^2 .

Let \mathfrak{P} be the set of all conjugate subgroups of P. Since M is the normalizer of P, \mathfrak{P} has exactly $1+q+q^2$ elements. We have the following proposition.

PROPOSITION 11. If P_1 and P_2 are two different elements of \mathfrak{P} then $P_1 \cap P_2 = e$.

Proof. Suppose $P_1 \cap P_2 = D \neq e$. There is an involution $\tau \in D$. The centralizer of τ contains a normal subgroup Q_0 of order q^3 which contains P_1 and P_2 . By Proposition 2 two different elementary abelian subgroups of order q^2 of Q_0 are not conjugate in G. This is a contradiction.

PROPOSITION 12. G is represented faithfully as a permutation group $\Gamma(P)$ on the set \mathfrak{P} . This permutation group $\Gamma(P)$ is doubly transitive.

Proof. As is well known in the theory of transitive representations of groups $\Gamma = \Gamma(P)$ is isomorphic with the coset representation of G on the cosets of M. The kernel of Γ is therefore the largest normal subgroup of G contained in M. Consider a normal subgroup X of M. If $X \cap P = e$, X is contained in the centralizer of P. On the other hand the centralizer of P coincides with P itself. Hence X = e. Hence if $X \neq e$, X must contain an involution τ of P. If X is the kernel of Γ , X contains all involutions of G by the assumption G. Since G is the normalizer of G, G contains all involutions of G. This is impossible since G contains at most G contains all involutions. Hence the kernel of G consists of the identity only: in other words G is faithful.

We consider the normalizer N of Q. It is not too difficult to show that Nhas $(q-1)^2$ linear characters, 2(q-1) characters of degree q-1, one with degree $(q-1)^2$ and q-1 characters of degree q(q-1). The faithful irreducible representations are of degree q(q-1). As a matrix representation Γ has degree q^2+q+1 . Γ certainly contains the principal character of G. Since Γ is faithful the decomposition of Γ on N contains at least one faithful character of N. Hence Γ has an irreducible component X of degree $\geq q(q-1)$. Suppose $\Gamma \neq 1+X$; then Γ contains another character Y of degree $\leq 2q$. The restriction Y' of Y to N does not contain any character of degree q(q-1), since q(q-1)> 2q. This means that the representation with the character Y represents every element of C by the unit matrix. Let G_1 be the kernel of this representation. Then G_1 is a proper normal subgroup of G containing all the involutions of G. Hence in particular G_1 contains a 2-Sylow subgroup Q of G. By a wellknown argument we conclude that $G = G_1N$ where N is the normalizer of Q. By the isomorphism theorem we see that $G/G_1 \cong N/N \cap G_1$. Since $N \cap G_1$ contains Q, G/G_1 is abelian. Therefore the degree of Y is one. Since Y is a component of Γ , the restriction Y'' to M contains the principal character of M. Hence Y'' is the principal character. This implies that $G_1 \supseteq M$. Since $N \subseteq M$, we conclude that $G = G_1N = G_1M = G_1$ which is a contradiction since G_1 is a proper subgroup. Hence $\Gamma = 1 + X$ and this is equivalent to the double transitivity (cf. [4, §207]).

A similar proposition holds if we replace P by L.

PROPOSITION 13. The normalizer of L in G has an index q^2+q+1 . G is represented as a doubly transitive permutation group on the set of all conjugate subgroups of L and this representation is faithful.

Our assumptions are symmetric with respect to P and L. So we get this proposition by the same argument as in case of P just replacing P by L.

8. As before let Q be a 2-Sylow subgroup and P and L be two elementary abelian subgroups of order q^2 (cf. §1). P is not conjugate to L (Proposition 2). Let $\mathfrak{P}(\mathfrak{P})$ be the set of all conjugate subgroups of P(L). Hereafter we shall call an element of \mathfrak{P} a point and an element of \mathfrak{P} a line. We want to define an incidence relation between points and lines so that $(\mathfrak{P},\mathfrak{P})$ forms a projective plane. Let P_1 be a point and L_1 a line. We shall say that P_1 is on L_1 or L_1 passes through P_1 if and only if $P_1 \cap L_1 \neq e$. From this definition it follows easily that our incidence relation is symmetric with respect to points and lines. Hence we have a duality.

PROPOSITION 14. The set $\mathcal{O} = (\mathfrak{P}, \mathfrak{L})$ with the incidence relation defined above forms a projective plane.

Proof. We want to show that two lines have one and only one point in common. Let P be a point. Then the normalizer M of P in G has 1+q2-Sylow subgroups. Take two different 2-Sylow subgroups O and O'. O contains another elementary abelian subgroup L of order q^2 . Similarly O' contains L'. These subgroups L and L' are lines. It is clear that both $L \cap P$ and $L' \cap P$ have orders q and hence $\neq e$. By the definition of incidence P is a common point of two lines L and L'. Suppose that P' is a common point of L and L'. Then we can take involutions τ and τ' of $L \cap P'$ and $L' \cap P'$ respectively. The centralizer of τ contains L and P' and hence L and P' are in the same Sylow subgroup Q_1 of G. Similarly L' and P' are in the same Sylow subgroup Q_1' of G. There is an element σ of G such that $\sigma P \sigma^{-1} = P'$, $\sigma Q \sigma^{-1} = Q_1$ and $\sigma Q' \sigma^{-1} = Q'_1$. (Note that the group M is triply transitive as a permutation group of the 2-Sylow subgroups of M.) Hence $\sigma L \sigma^{-1} = L$ and $\sigma L' \sigma^{-1} = L'$. This means that P and P' are conjugate in the subgroup M_0 consisting of elements which leave L and L' invariant. Using properties of the linear group M/P we know that M_0 is a subgroup of order $q^2(q-1)^2$ and contains P as a normal subgroup. This means P = P'. Hence P is the only common point of L and L'. In general if we take two arbitrary lines L_1 and L_2 , G contains an element ρ such that $\rho L \rho^{-1} = L_1$ and $\rho L' \rho^{-1} = L_2$ by Proposition 13. Clearly

 $\rho P \rho^{-1}$ is the only common point of L_1 and L_2 and our assertion is proved.

From the duality we conclude that two different points determine a unique line passing through both points. From the above consideration a line contains exactly 1+q points. Since $1+q+q^2$ is the total number of points, we see that there exist four points no three of which are collinear. Hence \mathcal{O} forms a projective plane.

Proposition 15. G is a subgroup of the collineation group of P.

This proposition is clear from the definitions of points, lines and the incidence relation.

Proposition 16. P is Desarguesian.

Proof. We shall apply a theorem of Gleason [5] which says that a projective plane is Desarguesian if for any point P and for any line L passing through P there is a collineation $\neq 1$ which leaves every point on L and every line passing through P fixed. Let P be any point. Then every line L' passing through P is contained in a 2-Sylow subgroup of the normalizer M of P. Hence every element of P leaves every such line invariant. By the duality every element of P leaves every point on P fixed. Hence every element of P leaves all points of P as well as all lines through P invariant. If P is on P then P contains a collineation P by definition. Hence our projective plane P satisfies the assumption of Gleason's theorem (loc. cit.) and hence P is Desarguesian.

From a property of Desarguesian planes the ground field F of \mathcal{P} has exactly q elements: F = GF(q). If $q = 2^{\mu}$, the order of the group G^* of all the collineations of \mathcal{O} is $\mu q^3(q^2-1)(q^3-1)$. G^* contains a normal subgroup G_0 of index μ consisting of all the linear transformations. By Proposition 15 G^* contains a subgroup isomorphic with G. Hence we may consider G itself as a subgroup of G^* . Let $G_1 = G \cap G_0$. Then the index $[G_0: G_1]$ is not larger than μ . The only subgroup of G_0 with index $\langle q \text{ is } G_0 \text{ itself or the normal subgroup of } G_0$ index 3 (if $q \equiv 1 \pmod{3}$). This may be proved by using the fact G_0 has at most 3 characters of degree < q (cf. the table of characters for G_0 obtained by Steinberg [6]). Suppose $G_1 \neq G_0$. Then $[G_0: G_1] = 3$. Since G has the same order as G_0 by Proposition 10, we have $[G:G_1]=3$. $G_0^*=GG_0$ is a subgroup of G^* generated by G_0 and a semi-linear transformation σ_0 such that $\sigma_0(\lambda, \mu, \nu)$ $=(\lambda^{\sigma}, \mu^{\sigma}, \nu^{\sigma})$ where σ is an automorphism of F over F' and [F: F'] = 3. G_1 is the subgroup of G_0 consisting of linear transformations with determinant 1. If C is the center of a 2-Sylow subgroup Q of G, C is a subgroup of G_1 and the centralizer of C in G_1 is of order $g^3(q-1)/3$. Hence the centralizer of C in G contains an element ρ such that $\rho(\lambda, \mu, \nu) = (\lambda^{\sigma}, \mu^{\sigma}, \nu^{\sigma})A$ where A is a 3×3 matrix with coefficients in F. Since ρ commutes with every involution in Cwe have $I(\alpha^{\sigma})A = AI(\alpha)$ for any $\alpha \in F$, where $I(\alpha) = M(0, \alpha, 0; 1)$ in the notation of the first section. This is however impossible. Hence G_1 must coincide with G_0 . Therefore we have $G \supseteq G_0$. By Proposition 10, G has the same order as G_0 and hence we conclude $G = G_0$. Thus we have shown the following final proposition.

Proposition 17. Let G be a finite group satisfying the conditions (A), (B) and (C). Then G is isomorphic with the group of all linear fractional transformations of 2 variables over the finite field F of G elements.

Together with the result of [7] (cf. §3) we get the main theorem stated in the introduction.

BIBLIOGRAPHY

- 1. R. Brauer, On groups whose order contains a prime number to the first power I, Amer. J. Math. vol. 64 (1942) pp. 401-420.
- 2. ———, Characterization of some type of finite groups, Lecture at the University of Tokyo: noted by K. Sekino, Sûgaku vol. 7 (1956) pp. 245-246.
- 2*. ——, On the structure of groups of finite order, Proceedings of the International Congress of Mathematicians vol. 1, 1954, pp. 1-9.
- 3. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. vol. 42 (1941) pp. 556-590.
 - 4. W. Burnside, The theory of groups of finite order, Cambridge, 1911.
 - 5. A. M. Gleason, Finite Fano planes, Amer. J. Math. vol. 78 (1956) pp. 797-807.
- 6. R. Steinberg, The representations of GL(3, q), GL(4, q), PGL(3, q) and PGL(4, q), Canad. J. Math. vol. 3 (1951) pp. 225-235.
- 7. M. Suzuki, On finite groups containing an element of order 4 which commutes only with its powers, Illinois J. Math. vol. 3 (1959) pp. 255-271.
- 8. ——, On characterizations of linear groups, I, Trans. Amer. Math. Soc. vol. 92 (1959) pp. 191-204.
 - 9. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig-Berlin, 1937.

HARVARD UNIVERSITY, CAMBRIDGE, MASS. UNIVERSITY OF ILLINOIS, URBANA, ILL.